Blue-to-Green Emitting Neutral Ir(III) Complexes Bearing Pentafluorosulfanyl Groups: A Combined Experimental and Theoretical Study

نویسندگان

  • Amlan K Pal
  • Adam F Henwood
  • David B Cordes
  • Alexandra M Z Slawin
  • Ifor D W Samuel
  • Eli Zysman-Colman
چکیده

A structure-property relationship study of neutral heteroleptic (1 and 2, [Ir(C∧N)2(L∧X)]) and homoleptic (3 and 4, fac-[Ir(C∧N)3]) Ir(III) complexes (where L∧X = anionic 2,2,6,6-tetramethylheptane-3,5-dionato-κO3,κO6 (thd) and C∧N = a cyclometalating ligand bearing a pentafluorosulfanyl (-SF5) electron-withdrawing group (EWG) at the C4 (HL1) and C3 (HL2) positions of the phenyl moiety) is presented. These complexes have been fully structurally characterized, including by single-crystal X-ray diffraction, and their electrochemical and optical properties have also been extensively studied. While complexes 1 ([Ir(L1)2(thd)]), 3 (Ir(L1)3), and 4 (Ir(L2)3) exhibit irreversible first reduction waves based on the pentafluorosulfanyl substituent in the range of -1.71 to -1.88 V (vs SCE), complex 2 ([Ir(L2)2(thd)]) exhibits a quasi-reversible pyridineC∧N-based first reduction wave that is anodically shifted at -1.38 V. The metal + C∧N ligand oxidation waves are all quasi-reversible in the range of 1.08-1.54 V (vs SCE). The optical gap, determined from the lowest energy absorption maxima, decreases from 4 to 2 to 3 to 1, and this trend is consistent with the Hammett behavior (σm/σp with respect to the metal-carbon bond) of the -SF5 EWG. In degassed acetonitrile, for complexes 2-4, introduction of the -SF5 group produced a blue-shifted emission (λem 484-506 nm) in comparison to reference complexes [Ir(ppy)2(acac)] (R1, where acac = acetylacetonato) (λem 528 nm in MeCN), [Ir(CF3-ppy) (acac)] (R3, where CF3-ppyH = 2-(4-(trifluoromethyl)phenyl)pyridine) (λem 522 nm in DCM), and [Ir(CF3-ppy)3] (R8) (λem 507 nm in MeCN). The emission of complex 1, in contrast, was modestly red shifted (λem 534 nm). Complexes 2 and 4, where the -SF5 EWG is substituted para to the Ir-CC∧N bond, are efficient phosphorescent emitters, with high photoluminescence quantum yields (ΦPL = 58-79% in degassed MeCN solution) and microsecond emission lifetimes (τε = 1.35-3.02 μs). Theoretical and experimental observations point toward excited states that are principally ligand centered (3LC) in nature, but with a minor metal-to-ligand charge-transfer (3MLCT) transition component, as a function of the regiochemistry of the pentafluorosulfanyl group. The 3LC character is predominant over the mixed 3CT character for complexes 1, 2, and 4, while in complex 3, there is exclusive 3LC character as demonstrated by unrestricted density functional theory (DFT) calculations. The short emission lifetimes and reasonable ΦPL values in doped thin film (5 wt % in PMMA), particularly for 4, suggest that these neutral complexes would be attractive candidate emitters in organic light-emitting diodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical study on the effect of N-substitution on the electronic structures and photophysical properties of phosphorescent Ir(III) complexes.

DFT/TDDFT calculations were carried out to investigate the electronic structures, absorption and emission spectra, and phosphorescence efficiency of recent synthesized Ir(III) complexes [Ir(tfmppy)2(tpip)] (1), [Ir(dfppy)2(tpip)] (2) (tfmppy = 4-trifluoromethylphenylpyridine; dfppy = 4,6-difluorophenylpyridine; tpip = tetraphenylimidodiphosphinate). The calculated absorption and emission wavele...

متن کامل

The effect of substituted 1,2,4-triazole moiety on the emission, phosphorescent properties of the blue emitting heteroleptic iridium(III) complexes and the OLED performance: a theoretical study.

A series of neutral heteroleptic mononuclear iridium(III) complexes was investigated using the density functional theory/time-dependent density functional theory approach to determine the effect of the substituted 1,2,4-triazole moiety on the electronic structures, emission, and phosphorescent properties and the organic light emitting diode (OLED) performance. The results reveal that substituti...

متن کامل

Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes

Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials...

متن کامل

Water-soluble Ir(iii) complexes of deprotonated N-methylbipyridinium ligands: fluorine-free blue emitters.

New blue or blue-green emitting iridium complexes have been synthesised with cyclometalating ligands derived from the 1-methyl-3-(2'-pyridyl)pyridinium cation. Efficient luminescence is observed in MeCN or aqueous solutions, with a large range of lifetimes in the μs region and relatively high quantum yields.

متن کامل

Theoretical study on the electron transfer and phosphorescent properties of iridium(III) complexes with 2-phenylpyridyl and 8-hydroxyquinolate ligands.

The complexes AlQ(3) and Ir(ppy)(3) (Q = 8-hydroxyquinolate; ppy = 2-phenylpyridyl) are typical green emitting fluorescence and phosphorescence materials, respectively. Here we hybridize Ir(ppy)(3) with AlQ(3) to investigate the optoelectronic properties of the Ir(III)-centred derivatives including (ppy)(2)IrQ, (ppy)IrQ(2) and IrQ(3) by using density functional methods. Our calculations show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017